Tomographic method for resolving the
Galatic binaries:

including multiple interferometers and antenna patterns



Tomography and Radon transform

* Radon transfrom 1s the mathematical
foundation of tomographic method

such as CAT—-Scan etc. . . These
applications have led to

developments of several

inverion methods for the
Radon transfrom O

* Here we use Radon transfrom
mnversion method for

Identification of Galatic binaries
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Radon Transformstion

F(p,&) =1 f(z,y)d(x - € — p)dzdy

X-Ray-beam-in-the-case-of v

CAT-Scan Q,

This is a new representation: where

integrals are known for all the points

on the circle, for all circles.




Relation to the Fourier Transform
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LISA Response as Radon transform

i Gravitational Wave detector are omni-directional:
LISA responds to the GW signal from all over the sky

h(t)= [dOd¢K(0,0¢,t)

1" LISA motion around the Sun introduces Doppler modulation:
l.e:

If a source is at sky position
(6,9)

Qt — Qt+DPp(0,0,1)]

with

®p =R sin6 cos (¢ — wr)




This implies the integration not on ¢t = constant on the (6, ¢, t)
space but on the surface t + ®p (0, ¢, t) plane.

h(t)= [dOdOK(O,0,t + Pp)

Mohanty and Nayak, Phys. Rev. D 73, 083006 (2006)

In the case of LISA the surfaces are not planes. We do a
coordinate transformation from (6, ¢) to a set of new Euclidean
like coordinate system

/x\ /\@Rsine cosd)\
y = V2R sin 0 sin ¢
\Z/ \ V2 (t+Pp) /




And the surface becomes a plane satistying the condition
t==C-x

where
(—coswt, —sinwt, 1)

|
=

And the signal becomes

h(r) :/K(x)a(r—g x)dx

K (x)is signal from binaries in the new coordinate system.

iz This Show that the LISA response is Radon transform of
Galatic binary signal



iz However, there is one major difference, in Standard Radon
transform ¢ and are independent of each other and span the
complete domain where the signal defined. In our caseé is
function of time. This leads to what is know as missing projec-
tions. i.e. we do not have all th realizations of Radon Trans-
form.
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Direct Fourier method:
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Signal From Binary

When the formalism was first developed we used only one state
of Polarization, I.e:
h(0,0,t) =exp(2miQt)

Here we use the realistic source we have:
h'(6,0,t)=h.(0,0,t)F (0,0,t)+h.(0,0,t)F.(0,0,t)
1= |t can be shown tha the response is still a Radon transform.

iz We can also understand how to generalize to arbitrary detector
motion.



Correlating two detector output:

Michelson X
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Noise estimation from Symmetric Sagnac

—B00

—400

—200

0

—B00

—400

—200

0

Michelson X combination Michelson Y combination

—-600 400 200 0 200 400 800 —-600 400 200 0 200 400 600

Michelson Z combination Symmetric Saghac combination

—-B0OD 400 200 0 200 400 800 -B0O0 400 200 o 200 400 8O0




Simulation with a distribution of binaries

1= Signal is generated for a distribution of binaries with 100 bina-
ries.

i=" Sky locations are generated Randomly.

1= distribution along the frequency is generated from 2 mHz with
various separations.

iz~ Reconstruction was done for 200 Frequency bin starting from
2 mHz.
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Simple detection method:



A  modified CLEAN
method has been devel-
oped Hayama, please
see the poster




Figure 1: Histogram of reconstructed image around the source
location for SNR=8




Error in estimated Sky position:
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iz Amplitude modulation may be deconvolve from the recon-
structed image to obtain the polarization state, work under
progress.



